AUTISM PREVENTION FATHER BABIES 24-34 PATERNAL AGE IS KEY IN NON-FAMILIAL AUTISMVaccines

"It is very possible that PATERNAL AGE is the major predictor of(non-familial) autism." Harry Fisch, M.D., author "The Male Biological Clock". Sperm DNA mutates and autism, schizophrenia bipolar etc. results. What is the connection with autoimmune disorders? Having Type 1 diabetes, SLE,etc. in the family, also if mother had older father. NW Cryobank will not accept a sperm donor past 35th BD to minimize genetic abnormalities.VACCINATIONS also cause autism.

Saturday, June 27, 2009

More Gene Mutations Linked To Autism Risk

More Gene Mutations Linked To Autism Risk


All About: Autism
Submitted by ruzik_tuzik on Jun 26th, 2009
Posted under: Autism
More pieces in the complex autism inheritance puzzle are emerging in the latest study from a research team including geneticists from the University of Pennsylvania School of Medicine, The Children’s Hospital of Philadelphia (CHOP), and several collaborating institutions. This study identified 27 different genetic regions where rare copy number variations – missing or extra copies of DNA segments – were found in the genes of children with autism spectrum disorders (ASDs), but not in the healthy controls. The complex combination of missing or extra copies of certain genes is thought to interfere with gene function, which can disrupt the production of proteins necessary for normal neurological development.

“We are finding that both inherited and new, or de novo, genetic mutations are scattered throughout the genome and it is becoming clear that different combinations of these variations contribute to autism susceptibility,” said study author Maja Bucan, PhD, Professor of Genetics at the University of Pennsylvania School of Medicine and the Chair of the Steering committee for Autism Speaks’ Autism Genetic Resource Exchange (AGRE). “We are grateful to families of children with autism spectrum disorders for their willingness to participate in genetic studies because family-based studies have many advantages. We have learned a lot both from genetic analyses of children with autism as well as the analyses of their parents and their unaffected siblings.”

Researchers compared genetic samples of 3832 individuals from 912 families with multiple autistic children from the AGRE cohort against genetic samples of 1070 disease free children from the Children’s Hospital of Philadelphia. This study also uncovered two novel genes where variations were found, BZRAP1 and MDGA2 – thought to be important in synaptic function and neurological development, respectively. Interestingly, key variants on these genes were passed down in some, but not all, of the affected individuals in families.

“We focused on changes in the exons of DNA—protein-coding areas in which deletions or duplications are more likely to directly disrupt biological functions,” said study leader Hakon Hakonarson, M.D., Ph.D., director of the Center for Applied Genomics at The Children’s Hospital of Philadelphia and associate professor of Pediatrics at the University of Pennsylvania School of Medicine. “We identified additional autism susceptibility genes, many of which, as we previously found, belong to the neuronal cell adhesion molecule family involved in the development of brain circuitry in early childhood.” He added that the team discovered many “private” gene mutations, those found only in one or a few individuals or families—an indication of genetic complexity, in which many different gene changes may contribute to an autism spectrum disorder.

The findings were published in the June 26 edition of the journal PLoS Genetics.

By further refining the genetic landscape of ASDs, the current study expands the findings of two large autism gene studies published in April, led by Hakonarson and Gerard Schellenberg, Ph.D., professor of Pathology and Laboratory Medicine at the University of Pennsylvania School of Medicine, as well as Bucan and others. One study was the first to report common gene variants in ASDs. The other identified copy number variants that raise the risk of having an ASD. Both studies found gene changes on two biological pathways with crucial roles in early central nervous system development. Hakonarson and Bucan said the latest findings reinforce the view that multiple gene variants, both common and rare, may be interacting to cause the heterogeneous group of disorders included under autism spectrum disorders.

The Autism Genetic Resource Exchange (AGRE), a program of Autism Speaks, provided genetic biomaterials and clinical data from families that have more than one family member diagnosed with an Autism Spectrum Disorder. Blood samples donated by children and their families at CHOP were used as healthy controls. AGRE makes data publicly available to qualified researchers worldwide.

Labels:

0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home

Top Autism Sites Health Blogs -  Blog Catalog Blog Directory StumbleUpon Toolbar Stumble It! http://www.stumbleupon.com/submit?url=http://www.yoursite.com/article.php&title=The+Article+Title blog directory PageRank Button Add to Technorati Favorites Health Blogs
Directory of Health Blogs Blogarama - The Blog Directory